Systems Science & Tobacco Control

Bringing it all together

GEORGE WARREN BROWN SCHOOL OF SOCIAL WORK

A MULTIDISCIPLINARY SOCIETY OF HEALTH BEHAVIOR SCHOLARS AND RESEARCHERS

Goals

- Present case study of how systems science has been used to address one particular scientific and public health challenge: tobacco control
- Organized by four basic goals of systems modeling:
 - Mapping
 - Predicting
 - Illuminating
 - Explaining

Complex behaviors: Levels of nested systems and time

From Glass & McAtee, 2006, SSM

Ecological framework: Social determinants of cancer

From Hiatt & Breen, 2008, AJPM

Applicability of systems science methods to tobacco control

Table 1 Comparison of traditional and complex system analytic assumptions

	Traditional analytic techniques	
Domain	assumptions	Complex systems assumptions
Functional form	Linearity	Nonlinearity
Common distributions	Normality	Nonnormality
Characteristics of actors	Homogeneity	Heterogeneity
Level of analysis	Single level	Multiple levels
Temporality	Static or discretely longitudinal	Dynamic, with feedback
Fundamental relationships	Among variables	Interaction of actors
Perspective	Reductionist	Holistic

From Luke & Stamatakis, 2012, ARPH

Tobacco control – Multiple levels, heterogeneous actors, interactivity

Level	Research area
Global	International trade
National	Tobacco regulation
Media	Effective messaging
Industry	Economics of tobacco control
Communities	Smokefree policies
Group	Social determinants
Person	Cessation
Product	Reduced harm
Gene, cellular	Nicotine dependence

Based on Giovino, 2002, Oncogene

Tobacco control as a complex system

From Best, et al., 2007, NCI Monograph #18

Example – Dynamic nature of tobacco control

MAPPING

ISIS – TC causal map to direct dynamic systems model

From Best, et al., 2007, NCI Monograph #18

Map of tobacco products 'system of systems'

From Brown, et al., 2011, www.sandia.gov

Mapping DHHS Tobacco Control Leadership

From Leischow, et al., 2010, NTR

Organizational 'blueprints' for state tobacco control programs

Using systems analysis to forecast the behavior of the system

PREDICTING

Briefs

Smoking Prevalence in 2010: Why the Healthy People Goal Is Unattainable

ABSTRACT

David Mendez, PhD, and Kenneth E, Warner, PhD

SimSmoke – Example from Brazil

Male prevalence: 1989 National Health and Nutrition Survey, 2003 World Health Survey, 2008 Global Adult Tobacco Survey ----- Female prevalence: 1989 National Health and Nutrition Survey, 2003 World Health Survey, 2008 Global Adult Tobacco Survey

From Levy, de Almeida, & Szklo, 2012, PLOS Medicine

Using systems model to examine counterfactuals

Policy Implementation	Year							
	1989	2000	2010	2010 Lower Bound ^a	2010 Upper Bound [*]	2050	2050 Lower Bound ^a	2050 Upper Bound ^a
Smoking prevalence								
Counterfactual: all policies at 1989 level	35.4%	32.6%	31.0%			24.9%		
All policies implemented	35.4%	23.7%	16.8%	22.2%	10.5%	10.3%	15.7%	5.6%
Percent reduction in smok	ing prevalen	ce from policy	change*					
All policies		-27.4%	-45.9%	-27.8%	-66.4%	-59.1%	-35.9%	-77.9%
Price only		-18.4%	-27.1%	-21.2%	-32.5%	-35.7%	-28.1%	-42.5%
Smoke-free air only		-4.7%	-7.6%	- 3.9%	-11.3%	-9.6%	-4.9%	-14.2%
Mass media campaign only		0.0%	-3.5%	- 1.8%	-5.3%	-4.5%	-2.3%	-6.8%
Marketing restrictions only		-5.3%	-7.7%	- 3.9%	-11.4%	-9.8%	-4.9%	-14.5%
Health warnings only		-0.6%	-4.4%	-2.2%	-6.5%	-6.5%	-3.3%	-9.6%
Cessation treatment only		-1.8%	-5.5%	- 1.3%	-24.8%	-9.5%	-4.7%	-19.5%
Youth access restrictions only		0.0%	-0.2%	0.0%	-0.1%	-0.5%	0.0%	-0.8%

^aRepresents the percent change in prevalence due to a particular policy or all policies relative to the counterfactual with all policies maintained at their 1989 level. doi:10.1371/journal.pmed.1001336.t003

Levy D, de Almeida LM, Szklo A (2012) The Brazil SimSmoke Policy Simulation Model: The Effect of Strong Tobacco Control Policies on Smoking Prevalence and Smoking-Attributable Deaths in a Middle Income Nation. PLoS Med 9(11): e1001336. doi:10.1371/journal.pmed.1001336

http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1001336

Using systems model to examine counterfactuals

Policy Implementation	Year	Year										
	1989	2000	2010	2010 Lower Bound ^a	2010 Upper Bound [®]	2050	2050 Lower Bound ^a	2050 Upper Bound ^a				
Smoking prevalence												
Counterfactual: all policies at 1989 level	35.4%	32.6%	31.0%			24.9%						
All policies implemented	35.4%	23.7%	16.8%	22.2%	10.5%	10.3%	15.7%	5.6%				
Percent reduction in smoki	ing prevalend	e from policy	change*									
All policies		-27.4%	=45.9%	-27.8%	-66.4%	= 59.1%	-35.9%	-77.9%				
Price only		-18.4%	-27.1%	-21.2%	-32.5%	-35.7%	-28.1%	-42.5%				
Smoke-free air only		-4.7%	-7.6%	-3.9%	-11.3%	-9.6%	-4.9%	-14.2%				
Mass media campaign only		0.096	-3.5%	- 1.8%	-5.3%	-4.5%	-2.3%	-6.8%				
Marketing restrictions only		-5.3%	-7.7%	-3.9%	-11.4%	-9.8%	-4.9%	-14.5%				
Health warnings only		-0.6%	-4,4%	-2.2%	-6.5%	-6.5%	-3.3%	-9.6%				
Cessation treatment only		-1.8%	-5.5%	- 1.3%	-24.8%	-9.5%	-4.7%	-19.5%				
Youth access restrictions only		0.096	-0.2%	0.0%	-0.1%	-0.5%	0.0%	-0.8%				

^aRepresents the percent change in prevalence due to a particular policy or all policies relative to the counterfactual with all policies maintained at their 1989 level. doi:10.1371/journal.pmed.1001336.t003

Levy D, de Almeida LM, Szklo A (2012) The Brazil SimSmoke Policy Simulation Model: The Effect of Strong Tobacco Control Policies on Smoking Prevalence and Smoking-Attributable Deaths in a Middle Income Nation. PLoS Med 9(11): e1001336. doi:10.1371/journal.pmed.1001336

http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1001336

CISNET – Smoking history generator

Fig. 1. Flow diagram of the smoking history generator.

From Jeon, et al, 2012, Risk Analysis

CISNET – Yale Cancer Model

Fig. 5. (a) Estimated number of lung cancer deaths per year among males using APC and scale calibration. (b) Estimated number of lung cancer deaths per year among females using APC and scale calibration.

From Holford, et al, 2012, Risk Analysis

Using systems analysis to reveal gaps, new causal mechanisms, new hypotheses

ILLUMINATING

Dissemination of scientific knowledge – Citation networks in secondhand smoke research

From discovery...to summary...to delivery

Figure 2. Main citation paths through discovery (top) and delivery (bottom) research articles related to SHS exposure, and the 120 citation links to the 15 research summaries cited most often by main path articles

Network predictors of Framework Convention on Tobacco Control treaty adoption

Adopted FCTC

Note. Figure created using Netdraw.¹⁸ For example, Norway and India had at least 1 member (although not necessarily the same individual) who subscribed to GLOBALink for at least 9 years from 1993 to 2005. Conversely, Jordan and Palau only had 1 member during the same period. There were 5 outlying countries. Thicker lines indicate stronger links on GLOBALink.

FIGURE 2-Network of the 30 countries that were the earliest to adopt the Framework Convention on Tobacco Control (first 15.5% of all countries), with links indicating the magnitude of comembership on GLOBALink.

Did not adopt FCTC

Note. Figure created using Netdraw.¹⁸ There were 18 outlying countries. Thicker lines indicate stronger links on GLOBALink.

FIGURE 3-Network of the 33 countries that did not adopt the Framework Convention on Tobacco Control, with links indicating the magnitude of comembership on GLOBALink.

From Wipfli, et al., 2010, AJPH

The Cost-Effectiveness of Intensive National School-Based Anti-Tobacco Education: Results from the Tobacco Policy Model¹

Tammy O. Tengs, Sc.D.,² Nathaniel D. Osgood, Ph.D., and Laurie L. Chen, M.S.

Health Priorities Research Group, University of California, Irvine, California 92697-7075

FIG. 3. Uncertainty in cost-effectiveness if an enhanced national school-based anti-tobacco education program is implemented for 50 years: the result of 5,000 simulation runs of the Tobacco Policy Model.

Interaction of social network characteristics and tobacco control messaging

Figure 1. A network with distributed

reactance. Dots represent individuals. Arrows represent social influence (more inward facing arrows means greater influence). Blue colored dots represent individuals with high reactance.

Figure 2. A strong negative message has minimal effect with distributed reactance.

The x-axis represents time (each individual makes a decision about smoking in each time period). The y-axis shows the number of individuals (here, "students" in a classroom) who are smokers or non-smokers.

From Hammond, 2006, Brookings Report

Figure 3. A network with concentrated

reactance. As in Figure 1, dots represent individuals (blue color indicates high reactance) and arrows represent social influence (more inward facing arrows means greater influence).

Figure 4. A strong negative message backfires with concentrated reactance. The x-axis represents time (each individual makes a decision about smoking in each time period). The y-axis shows the number of individuals (here, "students" in a classroom) who are smokers or non-smokers.

Using systems analysis to reveal how and why a system works the way it does, or how an intervention/policy will change the system

EXPLAINING

Peer Group Structure and Adolescent Cigarette Smoking: A Social Network Analysis*

SUSAN T. ENNETT

Research Triangle Institute

KARL E. BAUMAN

University of North Carolina, Chapel Hill

Peers, Schools, and Adolescent Cigarette Smoking

CHERYL ALEXANDER, Ph.D., MARINA PIAZZA, Sc.D., DEBRA MEKOS, Ph.D., AND THOMAS VALENTE, Ph.D.

Table 2. Logistic Regression Analyses of Peer Variables Associated With Cigarette Smoking Among Adolescents*

Variable Peer network smoking (<50%)		Model 1 ⁺		Model 2 [‡]			
	Odds Ratio	Adjusted SE	95% CI	Odds Ratio	Adjusted SE	95% CI	
	1.07	0.11	0.88, 1.30	1.03	0.11	0.87, 1.30	
Peer network smoking (≥50%)	1.91 [¶]	0.36	1.32, 2.78	1.89 [¶]	0.36	1.30, 2.75	
Best friend smoking (one or both)	2.00 [¶]	0.19	1.67, 2.41	2.01 [¶]	0.19	1.66, 2.42	
Popularity	1.02	0.07	0.90, 1.16	0.76	0.12	0.56, 1.03	
School smoking prevalence [§]	1.73 [¶]	0.15	1.46, 2.06	1.49 [¶]	0.15	1.22, 1.82	
Popularity [¶] school smoking				1.08 ^{II}	0.04	1.01, 1.15	
prevalence							

From Alexander, et al., 2001, JAH

Figure 1. Interactive effect of popularity and school smoking prevalence on current smoking. (* Logarithmic scale.)

Peers, Schools, and Adolescent Cigarette Smoking

CHERYL ALEXANDER, Ph.D., MARINA PIAZZA, Sc.D., DEBRA MEKOS, Ph.D., AND THOMAS VALENTE, Ph.D.

Table 2. Logistic Regression Analyses of Peer Variables Associated With Cigarette Smoking Among Adolescents*

Variable		Model 1 ⁺		Model 2 [‡]				
	Odds Ratio	Adjusted SE	95% CI	Odds Ratio	Adjusted SE	95% CI		
Peer network smoking (<50%)	1.07	0.11	0.88, 1.30	1.03	0.11	0.87, 1.30		
Peer network smoking (≥50%)	1.91¶	0.36	1.32, 2.78	1.89 [¶]	0.36	1.30, 2.75		
Best friend smoking (one or both)	2.00 [¶]	0.19	1.67, 2.41	2.01 [¶]	0.19	1.66, 2.42		
Popularity	1.02	0.07	0.90, 1.16	0.76	0.12	0.56, 1.03		
School smoking prevalence [§]	1.73 [¶]	0.15	1.46, 2.06	1772	0.15	1.22, 1.00		
Popularity [¶] school smoking prevalence				1.08 ^I	0.04	1.01, 1.15		

From Alexander, et al., 2001, JAH

Figure 1. Interactive effect of popularity and school smoking prevalence on current smoking. (* Logarithmic scale.)

Disentangling peer influence and selection

From Hall & Valente, 2007, AB

Fig. 2. Final SEM demonstrating direct effects of peer selection on smoking and smoking susceptibility, protective effects of smokers' influence, and indirect effects of selection of susceptible smokers. Marginally significant paths dashed. (GFI=.97, CFI=.94, RMSEA=.055).

Smoking-based selection and influence in gender-segregated friendship networks: a social network analysis of adolescent smoking

Liesbeth Mercken^{1,2}, Tom A.B. Snijders^{3,4}, Christian Steglich⁴, Erkki Vertiainen⁵ & Hein de Vries^{1,2}

Figure I The relative contribution of smoking-based selection and influence on similarities in smoking. Note: the model explained 82% of smoking behaviour similarity among males, 87% among females

From Mercken, et al., 2010, Addiction

Modeling dissemination of Best Practices in Tobacco Control

Figure A1. Contact, collaboration, and dissemination networks in Indiana. Nodes sized by betweenness centrality. Betweenness

centrality for the lead agency (darker node) was .127 for contact, .207 for collaboration, and .423 for dissemination.

Odds ratios for final model (M3) for all states

	Indiana			Texas		Wyoming	DC		
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	
Edges	0.01	(0.00-0.02)	0.23	(0.09-0.63)	0.07	(0.04-0.15)	0.00	(0.00-0.00)	
Degree (GWDegree)	0.06	(0.03-0.11)	0.05	(0.02-0.19)	0.02	(0.01-0.03)	0.12	(0.04-0.35)	
TC Experience	1.08	(1.03-1.13)	0.95	(0.88-1.02)	1.08	(1.02-1.15)	1.24	(1.12-1.37)	
Geographic Reach (Homophily)	1.72	(1.44-2.04)	5.33	(3.84-7.42)	0.62	(0.50-0.77)	3.95	(3.00-5.20)	
Agency Distance	1.00	(0.98-1.02)	0.92	(0.91-0.92)	0.99	(0.98-0.99)	0.99	(0.98-1.01)	
Network Contact	2.38	(2.28-2.48)	1.64	(1.43-1.88)	1.64	(1.57-1.71)	1.46	(1.34-1.59)	
Network Collaboration	1.78	(1.70-1.86)	2.99	(2.67-3.35)	1.76	(1.68-1.84)	7.29	(6.55-8.12)	

From Luke, et al., in press, HEB

Modeling dissemination of Best Practices in Tobacco Control

Figure A1. Contact, collaboration, and dissemination networks in Indiana. Nodes sized by betweenness centrality. Betweenness

centrality f the lead agency (darker node) was .127 for contact, .207 for collaboration, and .423 for dissemination.

Odds ratios for final model (M3) for an sumes

	Indiana			Texas		Wyoming		DC	
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	
Edges	0.01	(0.00-0.02)	0.23	(0.09-0.63)	0.07	(0.04-0.15)	0.00	(0.00-0.00)	
Degree (GWDegree)	0.06	(0.03-0.11)	0.05	(0.02-0.19)	0.02	(0.01-0.03)	0.12	(0.04-0.35)	
TC Experience	1.08	(1.03-1.13)	0.95	(0.88-1.02)	1.08	(1.02-1.15)	1.24	(1.12-1.37)	
Geographic Reach (Homophily)	1.72	(1.44-2.04)	5.33	(3.84-7.42)	0.62	(0.50-0.77)	3.95	(3.00-5.20)	
Agency Distance	1.00	(0.98-1.02)	0.92	(0.91-0.92)	0.99	(0.98-0.99)	0.99	(0.98-1.01)	
Network Contact	2.38	(2.28-2.48)	1.64	(1.43-1.88)	1.64	(1.57-1.71)	1.46	(1.34-1.59)	
Network Collaboration	1.78	(1.70-1.86)	2.99	(2.67-3.35)	1.76	(1.68-1.84)	7.29	(6.55-8.12)	

From Luke, et al., in press, HEB

Tobacco Town

- Use agent-based modeling to study tobacco retailer density and individual tobacco purchasing
- May be used as a retail policy laboratory to explore and compare the potential effects of various policy approaches
 BEFORE
 AFTER

- Agent/person (smoker)
- Retailer affected --- School buffer by school buffer

Retailer

Emerging opportunities for systems science in tobacco control

- Understand behavioral dynamics of tobacco use and addiction in the context of new tobacco products and nicotine delivery systems
- Build modeling laboratories to study and test the effects of tobacco control policies
- Use network and systems models to enhance dissemination and implementation of evidence-based practices and policies around the globe
- Greater integration of behavioral data that is contextually and temporally informative (e.g., EMA)

Will the tobacco control system blow up...

From Fallin, Grana, & Glantz, 2013, Tobacco Control

Will the tobacco control system blow up...

The Scientist » The Nutshell

NIH Funding Spat

A Republican representative objects to a study he said is politically partisan.

Pinit

By Kate Yandell | March 7, 2013

NIH Director Francis Collins NATIONAL HUMAN GENOME RESEARCH INSTITUTE

🛅 Link this 🕕 Stumble 💟 Tweet this

Republican representative Andy Harris of Maryland raised concerns about the National Institutes of Health's oversight of its grantees yesterday (March 5), *ScienceInsider* reported, after reading about an NIH-funded study connecting the rise of the Tea Party to tobacco funding.

Politicians and other officials, including NIH Director Francis Collins, had gathered at a Committee on Appropriations meeting to discuss how federal agencies were dealing with funding cuts. But as the meeting wound down, Harris addressed Collins to complain about the study,

which was published last month (February 8) in Tobacco Control.

...Or, will the system return to its resting state?

Source: Brookings "Artificial Anasazi" project, Axtell et al. PNAS 2002

For more information:

Douglas Luke

http://cphss.wustl.edu

dluke@wustl.edu

GEORGE WARREN BROWN SCHOOL OF SOCIAL WORK